Skip to main content
Log in

Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The incidence of bone disorders, whether due to trauma or pathology, has been trending upward with the aging of the worldwide population. The currently available treatments for bone injuries are rather limited, involving mainly bone grafts and implants. A particularly promising approach for bone regeneration uses rapid prototyping (RP) technologies to produce 3D scaffolds with highly controlled structure and orientation, based on computer-aided design models or medical data. Herein, tricalcium phosphate (TCP)/alginate scaffolds were produced using RP and subsequently their physicochemical, mechanical and biological properties were characterized. The results showed that 60/40 of TCP and alginate formulation was able to match the compression and present a similar Young modulus to that of trabecular bone while presenting an adequate biocompatibility. Moreover, the biomineralization ability, roughness and macro and microporosity of scaffolds allowed cell anchoring and proliferation at their surface, as well as cell migration to its interior, processes that are fundamental for osteointegration and bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36(Suppl 3):S20–7. doi:10.1016/j.injury.2005.07.029.

    Article  Google Scholar 

  2. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95. doi:10.1016/S1369-7021(11)70058-X.

    Article  Google Scholar 

  3. Bobe K, Willbold E, Morgenthal I, Andersen O, Studnitzky T, Nellesen J, et al. In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres. Acta Biomater. 2013;9(10):8611–23.

    Article  Google Scholar 

  4. Rai R, Keshavarz T, Roether JA, Boccaccini AR, Roy I. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng, R. 2011;72(3):29–47.

    Article  Google Scholar 

  5. He J, Huang T, Gan L, Zhou Z, Jiang B, Wu Y, et al. Collagen-infiltrated porous hydroxyapatite coating and its osteogenic properties: in vitro and in vivo study. J Biomed Mater Res Part A. 2012;100(A(7)):1706–15.

    Article  Google Scholar 

  6. Chiara G, Letizia F, Lorenzo F, Edoardo S, Diego S, Stefano S, et al. Nanostructured biomaterials for tissue engineered bone tissue reconstruction. Int J Mol Sci. 2012;13(1):737–57.

    Article  Google Scholar 

  7. Xie M, Olderøy MO, Zhang Z, Andreassen JP, Strand BL, Sikorski P. Biocomposites prepared by alkaline phosphatase mediated mineralization of alginate microbeads. RSC Adv. 2012;2(4):1457–65.

    Article  Google Scholar 

  8. Wu S, Liu X, Yeung KWK, Hu T, Xu Z, Chung JCY, et al. Hydrogen release from titanium hydride in foaming of orthopedic NiTi scaffolds. Acta Biomater. 2011;7(3):1387–97.

    Article  Google Scholar 

  9. Alvarez K, Nakajima H. Metallic Scaffolds for Bone Regeneration. Materials. 2009;2(3):790–832.

    Article  Google Scholar 

  10. Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29(10):1329–44.

    Article  Google Scholar 

  11. Wu S, Liu X, Yeung KW, Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng. 2014;80:1–36.

    Article  Google Scholar 

  12. Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJA, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013;25(36):5011–28. doi:10.1002/adma.201302042.

    Article  Google Scholar 

  13. Frohlich M, Grayson W, Wan L, Marolt D, Drobnic M, Vunjak- Novakovic G. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther. 2008;3(4):254–64. doi:10.2174/157488808786733962.

    Article  Google Scholar 

  14. Gaalen SV, Kruyt M, Meijer G, Mistry A, Mikos A, Beucken JVD, et al. Tissue engineering of bone. In: Blitterswijk CV, Thomsen P, Lindahl A, Hubbell J, Williams DF, Cancedda R, et al., editors. Tissue engineering. Burlington: Academic Press; 2008. p. 559–610.

    Chapter  Google Scholar 

  15. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546–54.

    Article  Google Scholar 

  16. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60(2):184–98. doi:10.1016/j.addr.2007.08.041.

    Article  Google Scholar 

  17. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med. 2006;10(1):7–19. doi:10.1111/j.1582-4934.2006.tb00287.x.

    Article  Google Scholar 

  18. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res. 1993;27(2):183–9. doi:10.1002/jbm.820270207.

    Article  Google Scholar 

  19. Tuzlakoglu K, Bolgen N, Salgado AJ, Gomes ME, Piskin E, Reis RL. Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci. 2005;16(12):1099–104. doi:10.1007/s10856-005-4713-8.

    Google Scholar 

  20. Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials. 2006;27(32):5480–9. doi:10.1016/j.biomaterials.2006.06.028.

    Article  Google Scholar 

  21. Kim H-W, Knowles JC, Kim H-E. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. J Biomed Mater Res, Part A. 2005;72A(2):136–45. doi:10.1002/jbm.a.30168.

    Article  Google Scholar 

  22. Gomes ME, Ribeiro AS, Malafaya PB, Reis RL, Cunha AM. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials. 2001;22(9):883–9. doi:10.1016/S0142-9612(00)00211-8.

    Article  Google Scholar 

  23. Mondrinos MJ, Dembzynski R, Lu L, Byrapogu VKC, Wootton DM, Lelkes PI, et al. Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering. Biomaterials. 2006;27(25):4399–408. doi:10.1016/j.biomaterials.2006.03.049.

    Article  Google Scholar 

  24. Duarte ARC, Mano JF, Reis RL. Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion. Acta Biomater. 2009;5(6):2054–62. doi:10.1016/j.actbio.2009.01.047.

    Article  Google Scholar 

  25. Tsivintzelis I, Pavlidou E, Panayiotou C. Porous scaffolds prepared by phase inversion using supercritical CO2 as antisolvent: i. Poly(l-lactic acid). J Supercrit Fluids. 2007;40(2):317–22. doi:10.1016/j.supflu.2006.06.001.

    Article  Google Scholar 

  26. Suh SW, Shin JY, Kim J, Kim J, Beak CH, Kim DI, et al. Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. ASAIO J. 2002;48(5):460–4.

    Article  Google Scholar 

  27. Sin D, Miao X, Liu G, Wei F, Chadwick G, Yan C, et al. Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Mater Sci Eng C. 2010;30(1):78–85. doi:10.1016/j.msec.2009.09.002.

    Article  Google Scholar 

  28. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4(8):743–65. doi:10.1002/mabi.200400026.

    Article  Google Scholar 

  29. Daniel LC, Jeffrey IL, Lawrence JB, Hod L. Additive manufacturing for in situ repair of osteochondral defects. Biofabrication. 2010;2(3):035004.

    Article  Google Scholar 

  30. Malone E, Lipson H. Fab@Home: the personal desktop fabricator kit. Rapid Prototyp J. 2007;13(4):245–55. doi:10.1108/13552540710776197.

    Article  Google Scholar 

  31. Fedorovich NE, Schuurman W, Wijnberg HM, Prins H-J, van Weeren PR, Malda J, et al. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C. 2011;18(1):33–44. doi:10.1089/ten.tec.2011.0060.

    Article  Google Scholar 

  32. Shaffer S, Yang K, Vargas J, Di Prima MA, Voit W. On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer. 2014;55(23):5969–79.

    Article  Google Scholar 

  33. Martínez-Vázquez FJ, Perera FH, Miranda P, Pajares A, Guiberteau F. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater. 2010;6(11):4361–8. doi:10.1016/j.actbio.2010.05.024.

    Article  Google Scholar 

  34. Hockaday LA, Kang KH, Colangelo NW, Cheung PYC, Duan B, Malone E, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012;4(3):035005.

    Article  Google Scholar 

  35. Santos CFL, Silva AP, Lopes L, Pires I, Correia IJ. Design and production of sintered β-tricalcium phosphate 3D scaffolds for bone tissue regeneration. Mater Sci Eng. 2012;32(5):1293–8. doi:10.1016/j.msec.2012.04.010.

    Article  Google Scholar 

  36. Diogo GS, Gaspar VM, Serra IR, Fradique R, Correia IJ. Manufacture of β-TCP/alginate scaffolds through a Fab@home model for application in bone tissue engineering. Biofabrication. 2014;6(2):025001. doi:10.1088/1758-5082/6/2/025001.

    Article  Google Scholar 

  37. Kang KH, Hockaday LA, Butcher JT. Quantitative optimization of solid freeform deposition of aqueous hydrogels. Biofabrication. 2013;5(3):035001.

    Article  Google Scholar 

  38. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31. doi:10.1016/j.biomaterials.2006.01.039.

    Article  Google Scholar 

  39. Choi D, Kumta PN. Mechano-chemical synthesis and characterization of nanostructured β-TCP powder. Mater Sci Eng C. 2007;27(3):377–81. doi:10.1016/j.msec.2006.05.035.

    Article  Google Scholar 

  40. Andersen T, Strand BL, Formo K, Alsberg E, Christensen BE. Chapter 9 Alginates as biomaterials in tissue engineering. Carbohydrate chemistry, vol. 37. Cambridge: The Royal Society of Chemistry; 2012. p. 227–58.

    Google Scholar 

  41. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci. 2006;6(8):623–33. doi:10.1002/mabi.200600069.

    Article  Google Scholar 

  42. Bonino CA, Krebs MD, Saquing CD, Jeong SI, Shearer KL, Alsberg E, et al. Electrospinning alginate-based nanofibers: from blends to crosslinked low molecular weight alginate-only systems. Carbohydr Polym. 2011;85(1):111–9. doi:10.1016/j.carbpol.2011.02.002.

    Article  Google Scholar 

  43. Valente JFA, Valente TAM, Alves P, Ferreira P, Silva A, Correia IJ. Alginate based scaffolds for bone tissue engineering. Mater Sci Eng C. 2012;32(8):2596–603. doi:10.1016/j.msec.2012.08.001.

    Article  Google Scholar 

  44. Lima AC, Batista P, Valente TA, Silva AS, Correia IJ, Mano JF. Novel methodology based on biomimetic superhydrophobic substrates to immobilize cells and proteins in hydrogel spheres for applications in bone regeneration. Tissue Eng Part A. 2013;19(9–10):1175–87.

    Article  Google Scholar 

  45. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26(18):3919–28. doi:10.1016/j.biomaterials.2004.09.062.

    Article  Google Scholar 

  46. Lin H-R, Yeh Y-J. Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res, Part B. 2004;71B(1):52–65. doi:10.1002/jbm.b.30065.

    Article  Google Scholar 

  47. Yang F, Xia S, Tan C, Zhang X. Preparation and evaluation of chitosan-calcium-gellan gum beads for controlled release of protein. Eur Food Res Technol. 2013;237(4):467–79. doi:10.1007/s00217-013-2021-y.

    Article  Google Scholar 

  48. Torres AL, Gaspar VM, Serra IR, Diogo GS, Fradique R, Silva AP, et al. Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration. Mater Sci Eng C. 2013;33(7):4460–9. doi:10.1016/j.msec.2013.07.003.

    Article  Google Scholar 

  49. Jiankang H, Dichen L, Yaxiong L, Bo Y, Bingheng L, Qin L. Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures. Polymer. 2007;48(15):4578–88. doi:10.1016/j.polymer.2007.05.048.

    Article  Google Scholar 

  50. Jeong SI, Jeon O, Krebs MD, Hill MC, Alsberg E. Biodegradable photo-crosslinked alginate nanofibre scaffolds with tuneable physical properties, cell adhesivity and growth factor release. Eur cells Mater. 2012;24:331–43.

    Google Scholar 

  51. Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, et al. Biodegradable polymer scaffolds for tissue engineering. Nat Biotechnol. 1994;12(7):689–93.

    Article  Google Scholar 

  52. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–15. doi:10.1016/j.biomaterials.2006.01.017.

    Article  Google Scholar 

  53. Jalota S, Bhaduri SB, Tas AC. Using a synthetic body fluid (SBF) solution of 27 mM HCO3 − to make bone substitutes more osteointegrative. Mater Sci Eng C. 2008;28(1):129–40. doi:10.1016/j.msec.2007.10.058.

    Article  Google Scholar 

  54. Lee JTY, Chow KL. SEM sample preparation for cells on 3D scaffolds by freeze-drying and HMDS. Scanning. 2012;34(1):12–25. doi:10.1002/sca.20271.

    Article  Google Scholar 

  55. Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W. Biomaterials as scaffold for bone tissue engineering. Eur J Trauma. 2006;32(2):114–24. doi:10.1007/s00068-006-6047-8.

    Article  Google Scholar 

  56. Lawson MA, Barralet JE, Wang L, Shelton RM, Triffitt JT. Adhesion and growth of bone marrow stromal cells on modified alginate hydrogels. Tissue Eng. 2004;10(9–10):1480–91. doi:10.1089/ten.2004.10.1480.

    Article  Google Scholar 

  57. Dittrich R, Tomandl G, Despang F, Bernhardt A, Hanke T, Pompe W, et al. Scaffolds for hard tissue engineering by ionotropic gelation of alginate-influence of selected preparation parameters. J Am Ceram Soc. 2007;90(6):1703–8. doi:10.1111/j.1551-2916.2007.01598.x.

    Article  Google Scholar 

  58. Rassis DK, Saguy IS, Nussinovitch A. Collapse, shrinkage and structural changes in dried alginate gels containing fillers. Food Hydrocoll. 2002;16(2):139–51. doi:10.1016/S0268-005X(01)00071-6.

    Article  Google Scholar 

  59. Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2000;22(1):87–96. doi:10.1016/S0142-9612(00)00174-5.

    Article  Google Scholar 

  60. Rechendorff K, Hovgaard MB, Foss M, Zhdanov VP, Besenbacher F. Enhancement of protein adsorption induced by surface roughness. Langmuir. 2006;22(26):10885–8. doi:10.1021/la0621923.

    Article  Google Scholar 

  61. Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, et al. Interactions between Alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules. 2007;8(8):2533–41. doi:10.1021/bm070014y.

    Article  Google Scholar 

  62. Daemi H, Barikani M. Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci Iran. 2012;19(6):2023–8. doi:10.1016/j.scient.2012.10.005.

    Article  Google Scholar 

  63. Tzaphlidou M, Zaichick V. Calcium, Phosphorus, calcium-phosphorus ratio in rib bone of healthy humans. Biol Trace Elem Res. 2003;93(1–3):63–74. doi:10.1385/BTER:93:1-3:63.

    Article  Google Scholar 

  64. Mansur HS, Costa HS. Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chem Eng J. 2008;137(1):72–83. doi:10.1016/j.cej.2007.09.036.

    Article  Google Scholar 

  65. Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25(19):4749–57. doi:10.1016/j.biomaterials.2003.12.005.

    Article  Google Scholar 

  66. Román J, Cabañas MV, Peña J, Doadrio JC, Vallet-Regí M. An optimized β-tricalcium phosphate and agarose scaffold fabrication technique. J Biomed Mater Res, Part A. 2008;84A(1):99–107. doi:10.1002/jbm.a.31394.

    Article  Google Scholar 

  67. Shi L, Shi L, Wang L, Duan Y, Lei W, Wang Z, et al. The improved biological performance of a novel low elastic modulus implant. PLoS ONE. 2013;8(2):e55015. doi:10.1371/journal.pone.0055015.

    Article  Google Scholar 

  68. Tam SK, Dusseault J, Bilodeau S, Langlois G, Hallé J-P, Yahia LH. Factors influencing alginate gel biocompatibility. J Biomed Mater Res, Part A. 2011;98A(1):40–52. doi:10.1002/jbm.a.33047.

    Article  Google Scholar 

  69. Hu Y, Wang J, Xing W, Cao L, Liu C. Surface-modified pliable PDLLA/PCL/β-TCP scaffolds as a promising delivery system for bone regeneration. J Appl Polym Sci. 2014;. doi:10.1002/app.40951.

    Google Scholar 

  70. Dowling DP, Miller IS, Ardhaoui M, Gallagher WM. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J Biomater Appl. 2011;26(3):327–47. doi:10.1177/0885328210372148.

    Article  Google Scholar 

  71. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91. doi:10.1016/j.biomaterials.2005.02.002.

    Article  Google Scholar 

  72. Renders GAP, Mulder L, Van Ruijven LJ, Van Eijden TMGJ. Porosity of human mandibular condylar bone. J Anat. 2007;210(3):239–48. doi:10.1111/j.1469-7580.2007.00693.x.

    Article  Google Scholar 

  73. Dumas JE, Prieto EM, Zienkiewicz KJ, Guda T, Wenke JC, Bible J, et al. Balancing the rates of new bone formation and polymer degradation enhances healing of weight-bearing allograft/polyurethane composites in rabbit femoral defects. Tissue Eng Part A. 2014;20(1–2):115–29. doi:10.1089/ten.TEA.2012.0762.

    Article  Google Scholar 

  74. Kamitakahara M, Ohtsuki C, Miyazaki T. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl. 2008;23(3):197–212. doi:10.1177/0885328208096798.

    Article  Google Scholar 

  75. Franco J, Hunger P, Launey ME, Tomsia AP, Saiz E. Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater. 2010;6(1):218–28. doi:10.1016/j.actbio.2009.06.031.

    Article  Google Scholar 

  76. Yin Y, Ye F, Cui J, Zhang F, Li X, Yao K. Preparation and characterization of macroporous chitosan–gelatin/β-tricalcium phosphate composite scaffolds for bone tissue engineering. J Biomed Mater Res, Part A. 2003;67A(3):844–55. doi:10.1002/jbm.a.10153.

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge funding from FEDER (POCI-COMPETE 2020, project number 007491), Portuguese Science Foundation (FCT) (UID/Multi/00709) and QREN (Programa Mais Centro) (CENTRO-07-0224-FEDER-002014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. J. Correia.

Additional information

R. Fradique and T. R. Correia have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10856_2016_5681_MOESM1_ESM.tif

Optical images of human osteoblast cells seeded in the presence of the different materials after 4 and 7 days of incubation at a magnification of 100×. Supplementary material 1 (TIFF 5088 kb)

XRD spectra of TCP powder and of the produced scaffolds. Supplementary material 2 (PNG 453 kb)

XRD card of CDHA and respective spectra. Supplementary material 3 (TIFF 3137 kb)

Supplementary material 4 (TIFF 4524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fradique, R., Correia, T.R., Miguel, S.P. et al. Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping. J Mater Sci: Mater Med 27, 69 (2016). https://doi.org/10.1007/s10856-016-5681-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5681-x

Keywords

Navigation